
I hereby consent to the publication of this abstract under the CC-BY license

GPU Accelerated QSM. Throw your slow CPUs out of the Window(s).
Patrick Fuchs1, Carlos Milovic1
1University College London, Medical Physics and Biomedical Engineering

Introduction: In Quantitative Susceptibility Mapping (QSM) local magnetic susceptibility distributions are reconstructed from
the phase of GRE measurements1. Since this relation is inherently three-dimensional this creates a computationally expensive
problem. Novel optimisation algorithms try to reduce the time needed for accurate QSM reconstructions, but these often
require parameter fine-tuning which may take from several minutes to a few hours. With the advent of consumer grade high
performance graphical processing units (GPU) with sufficient memory to contain the three-dimensional optimization
problem, leveraging this has become more feasible. In this abstract we demonstrate the processing power of a GPU by
speeding up the FANSI toolbox2.

Methods: MATLAB makes it surprisingly easy to implement GPU computing power using the gpuArray command. To illustrate
the power and speed up this provides for (almost) no extra coding we have added GPU acceleration to the open-source
FANSI toolbox and compared the performance of two different QSM algorithms on CPU and GPU. These are the ADMM-
based nlTV3 and the gradient descent-based NDI4,5 algorithms. The algorithms differ in the number of FFTs and matrix vector
products. They are run for a fixed number of iterations (nlTV: 100, NDI: 1000), on a numerical phantom, with increasing
matrix sizes (from 96 × 96 × 32 to 256 × 256 × 192, zero-padded) to increase the computational complexity. The
comparison is performed on three different computers, a laptop (MSI GF75 Thin 95C) and two desktops (two Dell Precision
5820s with different graphics hardware).

System MSI GF75 Thin 95C Dell Precision 5820 #1 Dell Precision 5820 #2

CPU Intel® Core™ i7-9750H Intel® Core™ i9-10920X Intel® Core™ i9-10920X

RAM 32GB DDR4 – 2133MHz 64GB DDR4 - 2666MHz 64GB DDR4 - 2666MHz

GPU NVIDIA® GeForce® GTX 1650 NVIDIA® Quadro® RTX 4000 NVIDIA® Quadro® P2000

GPU Mem 4GB 8GB 5GB

MATLAB™ 2018a 2020b 2019b

OS Fedora 32 Windows 11, Ubuntu 20.04 Kubuntu 18.04

Table 1. A table comparing the hardware of the different systems.

Figure 1. Computational times for the nlTV (left) and NDI (middle) algorithms. Solid lines are CPU times and dashed lines are
GPU times. Ratio between CPU and GPU computation times(right). The value denotes the amount of speedup achieved by
running the algorithms on the GPU as opposed to the CPU. Solid lines denote nlTV and dashed lines the NDI algorithm

Results: The computation times for nlTV and NDI can be found in Figures 1 (left and middle). A comparison between the
acceleration factors is presented in Figure 2 (right).

Discussion: Both algorithms show significant speedup on the GPU compared to the CPU implementation, the nlTV algorithm
benefits slightly more, probably due to its larger reliance on FFTs and lower iteration count. Furthermore, it was found that
both CPU and GPU based implementations (typically) run faster on a Linux based operating system than a Windows based
one, possibly because of the memory and computational overhead and management of the operating system. The observed
drop in speedup is most likely to the efficiency of the FFTW algorithm for matrix sizes factors of 2.
The limited memory available is a significant bottleneck to high resolution QSM reconstructions, as a matrix size of
512 × 512 × 512 would be too large for any of the graphics cards tested here. Lastly, unfortunately GPU computation in
MATLAB is constrained to NVIDIA hardware (as is the case for most high-level programming language) since the support is
through the CUDA language.

Conclusion: Using even a four-year-old GPU significantly outperforms current state of the art CPU processors on large enough
QSM reconstruction problems, for which GPUs provide between a 2.5 up to 18 times. We hope this inspires others to speed
up their open-source tools using the GPU.

References: 1Schmueli, K., Academic Press, 2020(1):819-838. 2FANSI toolbox: https://gitlab.com/cmilovic/FANSI-toolbox/.
3Milovic, C. et al., Magn Res Med. 2018, 4Polak, D, et al., NMR Biomed. 2020. 5Milovic, C. et al., ISMRM 2021.

https://gitlab.com/cmilovic/FANSI-toolbox/

