
I hereby consent to the publication of this abstract under the CC-BY license 

E-MaRSSim: A Python-based open-source MRI 
pulse sequence simulation tool 
T. Tensen,1 M. Božić-Iven,1,2 C. Coletti,1 S. 
Weingärtner1 
1Department of Imaging Physics, Delft University 
of Technology, Delft, The Netherlands 
2Computer Assisted Clinical Medicine, Heidelberg 
University, Mannheim, Germany 
 
Introduction:  
Numerical simulations are an immediate, flexible 
and accessible tool for understanding the 
fundamentals of MRI physics.  
Several open-source tools have been proposed 
recently1,2,3, which provide comprehensive 
simulation environments. However, the core of 
the simulation software is hidden from the final 
users, who often interact only with the graphical 
user-interface. With this work, we propose a Python-
based, hands-on, fully customizable open-source 
MRI pulse sequence simulation framework for educational purposes. The aim is to provide an easy-to-use simulation tool, 
with minimal computational hardware requirements, to facilitate the practical study of MRI basic principles. 
Methods:  
The simulation framework is based on Python and can be operated across platforms using Google Colab notebooks. The 
simulation workflow is illustrated in Fig. 1. Voxel wise tissue properties (PD, T1, T2) can be imported from custom images, and 
serve to simulate a grid of isochromats. Other supported inputs are phantom flow velocity and acceleration maps (Fig. 1), as 
well as a B0 map. The pulse sequence is defined by calculating the traces for the RF pulses, the gradients Gx, Gy, and Gz, and 
the ADC. Users can freely adjust the strength, timing and shape of gradient element to implement their custom sequence 
diagram. Bloch simulations are then performed on the isochromat grids, including relaxation and off-resonance effects. 
Finally, the fully sampled, simulated image is reconstructed using inverse FFT. For a demonstration of the simulator 
functionalities, two built-in pulse sequences can be chosen: a gradient-echo and a spin-echo sequence. The phantom has a 
size of 61x61 pixels and contains one slice with different proton density, T1 and T2 values (Fig. 1).The following sequence 
parameters are used: TE/TR = 11 ms/19 ms, flip angle = 90, Gradient amplitudes: Gx = 0.00385, Gy = 0.00012 and Gz = 0.00164 
T/m. 
Results:  
The framework described above was used to simulate an image acquisition with a gradient-echo sequence on a numerical 
short-axis cardiac phantom. The simulation time for a phantom of this size (61x61x1) is 9min 33s ± 2min 27s (mean ± std. for 
7 runs). Fig. 1 shows the simulated k-space and corresponding reconstructed image, which appears slightly noisy compared 
to the original phantom. In a second simulation, flow effects in the ventricles are emulated. The k-space and reconstructed 
image show distinct artifacts, as can be seen in Fig. 1. Lastly, when flow compensation gradients are added to the sequence, 
the flow related artifacts are reduced in the simulated k-space and image as depicted in Fig. 1. 
Discussion:  
In this project, we demonstrated an open-source, Python-based framework for MRI sequence simulations. Without flow 
effects, the simulation yields a k-space and reconstructed image which are consistent with the used numerical phantom. As 
expected, when flow is simulated, significant image artifacts occur, which visually resemble typical flow artefacts4. 
Incorporating gradient moment nulling in the sequence, however, mitigates flow-related dephasing and significantly 
improves simulated image quality. Similarly, other interesting MRI phenomena could be simulated using this tool. The tool 
assumes that R2’= 0 (T2 = T2*). An additional reversible dephasing component will be added in future versions. The tool is 
presently limited by long simulation times when large matrix sizes and/or high resolutions are used. This warrants further 
acceleration through the use of graphic processing units (GPU) in future releases. 
Conclusion:  
We have designed an open-source MRI simulation framework that is user-friendly and fully customizable. The user can apply 
and adapt already implemented MRI sequences, or easily design new customized ones. Together with the possibility for 
custom phantoms, this gives rise to a plethora of examples and use-cases. In educational contexts, this framework can help 
to easily demonstrate and understand the effects of MRI pulse sequences. Code can be retrieved at: 
https://github.com/MarsLab-TUDelft/E-MaRSSim. 
References:  
1Layton, K. J., et al., MRM (2017). 
 2Ravi, K. S., Geethanath, S., and Vaughan, J.T., JOSS (2019). 
 3imr-framework/py2jemris. Accessed October 8, 2020. https://github.com/imr-framework/py2jemris. 
 4Ferreira, P. F., et al., JCMR (2013). 
 5Bydder, G. M., and Young, I.R., JCAT (1985). 
 6Felmlee, J. P., and Ehman, R.L., Radiology (1987). 

Figure 1: Workflow of the proposed simulation tool with example 
simulated k-space (top row) and images (bottom row). Ideal phantom is 
compared with simulated scans without  and with blood  flow effects.. 


